
netpd - a Collaborative Realtime Networked Music Making
Environment written in Pure Data

Roman HAEFELI
Media Artist

Zürich,
Switzerland

roman.haefeli@gmail.com
http://www.netpd.org

Abstract
This paper presents netpd, a framework intended for
making music collaboratively and in real-time writ-
ten in Pure Data (Pd)[?]. Users join by connect-
ing to a central server in order to have a session
together (not much unlike a jam session in Jazz mu-
sic) and load self-written or pre-existing instruments
(Pd patches) to play with. The framework maintains
state synchronicity between clients at any given time
by exchanging control messages over the server. The
protocol in use is fully based on OSC[?].

netpd does not address the transmission of au-
dio data, thus it is primarily used for synthesized
/ generated sound, but might be useful in other ar-
eas where state synchronicity is a goal (networked
games, graphics, etc.).

Keywords
Pure Data, Network, Music, Real-time, OSC

1 Introduction

Early experiments with transmitting control
messages over a network for making music
started in 2004 when an early version of netpd
was developped. While first drafts of in-
struments were an interleaved blend of DSP
parts, message control and state synchroniza-
tion parts, it became clear soon that a design
which clearly separates those parts would allow
the creation of a framework that gives the de-
signer of an instrument a high degree of freedom
while keeping the complexity of state synchro-
nization under hood. Crucial to the netpd ex-
perience are two distinct layers:

1. The netpd core framework (in this paper
simply called framework), which consists
of a server, a client application, and a set
of abstractions1 (netpd-abstractions) which
are used to create netpd-instruments.

2. The netpd-instruments: Pd-patches cre-
ated by netpd users which are loaded in the

1abstractions are modules written in Pure Data that
can be instantiated in a patch.

client application and played during a ses-
sion.

This paper primarly addresses the design of
the framework, which aims to provide the tools
to enable skilled2 users to design their own in-
struments to be used and shared with netpd.
It is important to understand that the pre-
sented framework has no notion of music and
is only the basis for user-designed instruments
and that those instruments make up the netpd
experience. It becomes apparent that collabo-
ration happens on the level of playing together,
but also on the level of designing and sharing
patches.

2 Basic design

Users load netpd’s client application chat.pd in
Pd (or Pd-extended, for that matter) which es-
tablishes a connection to a central server. The
server acts as a message relay between clients:
it forwards incoming messages from clients to
any or all other clients.

Server

Client 1 Client 2 Client 3

Figure 1: Client-server model

A session starts as soon as a user loads an
instrument - which itself is a Pd patch with cer-
tain netpd specific properties - into the client.
The clients keep the list of of loaded instru-
ments synchronized among each other at any
time. As necessary, clients even transfer the in-
struments (the .pd-files) to their peers in order

2knowing how to create Pd patches is sufficient to be
able to create netpd-instruments

to ensure synchronicity . Any user may load
more instruments into their client and these ap-
pear immediately (or after the time of transfer)
in all clients.

Client 1

instrB

User 1 loads instrA

Client 2
instrA

User 2 loads instrB

instrB

instrA

Figure 2: Instrument synchronization

Users play the instruments by manipulating
their GUIs. Also the instruments keep their
state synchronized among clients. Any change
is immediately reflected on all clients. All users
can play on all loaded instruments. Also, every
user immediately experiences the manipulations
of its peers. Although the generated sound is
rendered on every client separately, the result is
the same everywhere.

Client 1

instrA

freq 440

vol 0.8

Client 2

instrA

freq 440

vol 0.8
0.8

440

User 1 sets freq to 440 User 2 sets vol to 0.8

Figure 3: State synchronization

3 The framework

Let me divide the requirements of above sce-
nario into three main tasks which will be cov-
ered separately in this document.

Obviously, the clients need a way to com-
municate with each other. A message protocol
is defined, which the whole communication be-
tween clients (and between client and server) is
based on.

Another task of the framework is to share in-
struments between clients and to make sure that
at any given time the set of loaded instrument is
synchronized among connected clients. In that

respect, netpd acts as a peer-to-peer file sharing
tool for Pd patches.

State synchronization among instances of
netpd-instruments is a further goal of the frame-
work. Similar to the sharing of instruments
described above, state synchronicity must be
maintained at any given time. Unfortunately,
state synchronization does not automatically
work for arbitrary patches. The use of netpd-
abstractions facilitates the creation of state-
synchronized instruments.

3.1 The message protocol

It was decided to make the communication of
the framework fully based on the OSC protocol,
mainly because of its flexibility and its wide ac-
ceptance in music and related fields. OSC is ag-
nostic of the underlying transport layer. netpd’s
requirements for reliability left TCP as the pre-
ferred transport protocol. netpd adheres to the
version 1.1 of the OSC specification[?] which
specifies SLIP[?] as a framing mechanism for
stream-oriented protocols (such as TCP). Fig-
ure ?? shows how the protocols are stacked.

netpd

OSC

SLIP

TCP

Figure 4: protocol stack

3.1.1 Receiver ID

The sole purpose of the server is to relay mes-
sages between clients. Clients may send mes-
sages either to all or to specific clients. This is
achieved by defining the first field of the OSC
address as the receiver ID. Table ?? shows the
complete list of valid receiver IDs:

ID Receiver

/b broadcast (all clients)
/s server (not forwarded)
/l local (not sent to server)
/[ID] client with given ID

Table 1: List of valid receivers

The /l address is used in a similar way to lo-
calhost in networking: /l-messages are looped
back by the client. All other messages are sent
to the server. The server checks the first field of

an incoming messages and forwards it accord-
ingly. It disregards any message with an invalid
receiver ID.

/b-messages are forwarded to all connected
clients, even to the one the message originated
from.

/s-messages are read by the server and al-
low the client to request certain data such as
its client ID.

Any message whose first field is an integer
number between 0 and 999’999 is forwarded to
client with the given ID if it exists. Otherwise
the message is disregarded. The server does not
strip the receiver ID field when forwarding a
message, instead it replaces it by the ID of the
sender. This allows the receiving client to know
the origin of the message.

For instance, the server receives the following
message from the client 3:

/6/megasynth/voice1/freq 8000

The server replaces the receiver ID by the sender
ID and forwards the message to the client 6:

/3/megasynth/voice1/freq 8000

3.1.2 Server methods

Only the first field of the incoming message is
relevant to the server, except if the first field
is /s. The second field of a /s-message is the
namespace for optional server modules. At the
time of writing none exist, so only /server is
currently used. The third field specifies the type
of data the client requests. Only a minimal set
of client requests is supported:

/s/server Data

/socket socket number (client ID)
/ip IP address of the client
/num of clients number of clients
/protocol version protocol version

Table 2: List of supported server methods

The server responds to such messages only to
the requesting client. Client requests may con-
sist only of the OSC address, whereas the server
appends the requested data to the message. A
typical client request and the according server
response looks like:

/s/server/protocol_version
/s/server/protocol_version 2 0

3.1.3 Interoperability

Since OSC is a standardized protocol, other ap-
plications (Pd based or not) may be used to par-
ticipate in a netpd session as long as the mess-
sages adhere to above definitions. Similarly, it
is thinkable to intercept netpd traffic in order
to control hardware, for instance. Altough the
protocol as well as the server were designed with
the presented framework in mind, those might
be used solely for the purpose of sending mes-
sages between an arbitrary number of nodes in
applications totally different from netpd. Modu-
larity was one of the key aspects when rewriting
the framwork, which should make it easy to take
out and use only those parts of interest.

NOTE: so called OSC-Bundles are not sup-
ported by netpd and yet it is not clear if and
how support for them can be added.

3.2 The client

Figure 5: chat user interface

A user participates by opening the netpd-
client’s main patch called chat.pd in Pure Data.
This patch immediately establishes a connec-
tion to the server and presents a user interface
for chatting with other users. Being able to
communicate (with words) is crucial for estab-
lishing a session. Before sending anything else
though, chat checks the protocol version of the
server and requests its own client ID. It also
shows who is participating in the current ses-
sion.

At this point the user does not yet take part
in the ongoing session, but they might do so
by launching unpatch (by clicking the unpatch
button in chat).

Unpatch is the management interface for
loading and closing netpd-instruments. As soon
as it is launched, it automatically synchronizes
with its peers and loads all netpd-instruments

Figure 6: unpatch user interface

that are part of the running session. netpd-
instruments that are not yet present locally are
requested and transferred from the peers before
loading. Once all instruments are loaded and
synced, the user is able to control all instru-
ments used in the session.

3.2.1 netpd meta tags

How does unpatch know which patches (instru-
ments) need to be transferred? What happens
when two users have different versions of the
same instrument? What if a patch has depen-
dencies, because it uses abstractions? netpd
uses meta tags to define some properties of an
instrument. A valid meta tag section in an in-
strument is mandatory, otherwise unpatch re-
fuses to load the instrument. If present, those
tags are read and parsed before the instrument
is actually loaded. The netpd meta tags are or-
ganized hierarchically in subpatches and mes-
sage boxes. The subpatches act as namespaces,
whereas message boxes contain properties and
optionally one or more values for those prop-
erties. A subpatch [pd abslist] that contains
a messagebox [synthvoice(is equivalent to a
messagebox containing [abslist synthvoice(. In
terms of implementation, subpatches may use
any depth of nesting. However, netpd uses one
at most.

pd NETPD 2 0 declares the section of the netpd
meta tags. This subpatch may be placed
anywhere in the instrument patch, however
it is advised to put it into the main (top-
most) canvas for readability. ’NETPD’ is a
reserved name and must not be used for any
other subpatches in an instrument. The
’2 0’ part is optional and specifies the ver-

sion of the meta tag definition. unpatch as-
sumes the most current version if not spec-
ified.

version 0 3 1 is mandatory and specifies
the version of an instrument. The ver-
sion must consist of three integer num-
bers. netpd does not define the way
they are used. When comparing two
differing versions, it is only relevant for
unpatch which is higher, whereas the
first number is the most significant.

pd abslist is optional and defines the de-
pendencies. It contains references to
abstractions used by the instrument.

synthvoice is the name of the ab-
straction and refers to a file
netpd/abs/synthvoice.pd.

singleton is optional and defines a single-
ton instrument. Such an instrument
may be only loaded once. Loading fur-
ther instances of such an instrument is
denied by unpatch.

Both instruments (patches) and their depen-
cencies (abstractions) must contain a meta tags
section. The meta tag ’singleton’ only applies
to instruments, since abstractions are never
loaded directly by unpatch (they are instanti-
ated within instruments). Dependencies are re-
solved recursively which allows to group several
abstraction into a meta abstraction that holds
nothing more but a meta tag section that refer-
ences many abstractions (like meta packages in
Debian).

Before unpatch loads an instrument, all its
dependencies and child dependencies must be
resolved. Instruments can only depend on ab-
stractions, but not on other instruments, since
instruments are only loaded by user interaction
and never automatically. Because instruments
and their abstractions are treated in distinct
ways, they are saved in separate directories:
netpd/patches for instruments and netpd/abs
for abstractions. Only instruments that reside
in netpd/patches can be loaded with unpatch.

3.2.2 Instrument synchronization

When a client loads an instrument, it notifies all
other clients about the name of the instrument,
its version, its dependencies and their version.
Its peers check the list and issue a request to
the initiating client for any item they do not
have at all or whose version number is smaller.

If they find their local version of an item to be
higher, they notify the initiating client about
it and the user who loaded the instrument will
be presented an according message (”found ver-
sion 1.3.5 of abstraction ’synthvoice’ on client
7”). Such a version mismatch is not resolved
automatically in order to protect the user from
loading a version different from the one they had
in mind. The user may still decide to resolve the
situation by reloading unpatch. In this case his
client requests the intrument and its dependen-
cies from a peer and the more up-to-date remote
version will overwrite the local one.

When a client joins an already running ses-
sion, it tries to find a peer in a ’synced’ state.
If there is any, it requests the list of currently
loaded instruments and dependencies (with cor-
responding versions) from it. As soon as all in-
struments are loaded successfully, it marks it-
self as ’synced’. From this moment it will also
advertise itself as ’synced’ to new clients and
answer instrument list requests. In case a client
does not get a response to the initial request -
because it is the first in the session - it sets itself
to ’synced’ after a timeout.

3.3 State synchronization

netpd thinks of instruments as containers of a
variety of different data sets and data types that
define the state of the instrument and may be
modified at any time. Those data sets may be
a number (changed by slider movements, for in-
stance), a table of numbers, a list of strings, a
string, a multi-dimensional number array, etc.

A user plays an instrument by modifying
those data sets which in turn control the param-
eters of the instrument. netpd provides a hand-
ful of abstractions (a.k.a netpd-abstractions)
that each cover a specific data set. Such an
abstraction automatically keeps the content of
a data set of a certain instrument synchronized
among all clients, no matter which user is ma-
nipulating it. Depending on the network la-
tency and the amount of data the synchroniza-
tion might happen in near real-time.

All netpd-abstractions provide an input for
manipulating data and an output for passing
those modifications to the instrument. In the
simplest case the modification and the data
is equivalent. For instance, a user interaction
changes a number that is sent to the abstrac-
tion, the abstraction stores the number and
broadcasts it to all clients and finally outputs it
to the instrument. Another example of a data

set is a table of numbers that may be used for a
table-lookup oscillator. A modification of such
table can be the change of a value at a certain
position, but also a change of a whole section of
the table. Changing the size of the table may
represent an other valid form of manipulation.
The netpd-abstraction responsible for synchro-
nizing tables broadcasts those modifications to
all clients. When received, the modifications
are applied to the table and output to the in-
strument. In the case of table-lookup oscillator
the instrument may not need the output as it is
reading the table constantly. In other cases it
might be crucial to know what exactly has been
changed.

If all variable parameters of an instrument are
synchronized with above techniques, the gen-
erated sound (or whatever the instrument out-
puts) is identical for every client.

3.3.1 Namespaces

In order to allow many instances of an in-
strument simultaneously, each instrument is as-
signed a unique ID (an integer number) at load-
ing time. Unpatch does not load instruments
as stand-alone patches, but instantiates them
as abstractions and gives the ID as argument.
This allows an instrument to operate in its
own namespace when exchanging messages with
other clients. Those namespaces are used in
OSC message by putting the instrument ID into
the second field of the OSC address and the
instrument name into the third field. Techni-
cally the instrument name is not necessary, but
it makes OSC messages more human-readable.
netpd-abstractions used within instruments op-
erate in a child namespace of the instrument
namespace.

receiver ID
| instrument ID
| | instrument name
| | | netpd abstraction name
| | | |
/b/7/megasynth/lookup 12 0.7 0.8

Figure 7: OSC namespaces in netpd

Namespaces with more depth might be used
if appropriate. A typical use case is to
group many netpd-abstractions into another
abstraction. This way a netpd-ified (state-
synchronized) module is created that can be in-
stantiated many times in an instrument, with
different arguments for different namespaces.

3.3.2 netpd-abstractions

As explained in the previous section, several
kinds of netpd-abstractions manage different
kind of data sets. In order to ensure state
synchronicity of instruments among clients -
even if new clients join a session - each instru-
ment must contain a special netpd-abstraction
[netpd head] that manages state initialization
and state transfers between clients. It is kind
of the master of all other netpd-abstractions in
the instrument. Those do not send their data
to the network directly, but to [netpd head]
which prepends the appropriate namespace of
the instrument before forwarding it to the net-
work. [netpd head] also may request all netpd-
abstractions to dump their current state when
necessary.

At instrument loading time it initializes the
instrument by requesting a dump which it for-
wards to /l (the local client [itself]). It does so
in order to transfer the internal default values of
all netpd-abstractions to the instrument. Then
it tries to find a remote peer in ’synced’ state. If
such a peer is around, it prompts it to send back
the current state of the instrument. This sets all
netpd-abstractions of the local instrument to the
current state. The same mechanism as the in-
strument list synchronization of unpatch is used
here.

To sum it up, an instrument needs one
[netpd head] and any number of other netpd-
abstractions:

netpd_head $1 megasynth is responsible for the
state management of the instrument. The
variable $1 is replaced by the instrument
ID given by unpatch. The second argument
represent the instrument name.

netpd_f $1 volume 0.7 synchronizes a single num-
ber. Additionally, it reads the value from a
GUI object (slider, number box, radio but-
ton, etc.) whose receive and send names
are set to ’$1-volume’ and automatically
updates the GUI object on state changes.
The third argument ’0.7’ is optional and
sets the init value.

netpd_t $1 waveform 256 synchronizes a table
named ’$1-waveform’. The third argument
sets the table size. Although it could have
been designed to hold the table internally,
an external table allows the use of a graph-
ical array in the GUI of the instrument.

netpd_r $1 something is a simple receiver for con-
tent in the given namespace. This comes
in handy when a certain data set is needed
in different locations of the instrument.

netpd_s $1 something is the counterpart of
[netpd r]: It sends any kind of data under
given namespace. It is only used in special
cases, as it doesn’t have any state and thus
can’t be used for state synchronization.

netpd_a $1 anything a is container for an any-
thing message (a message with an arbitrary
number of elements).

Currently there aren’t more netpd-
abstractions, though one could easily think
of more data types to be synchronized. Pure
Data provides only very few data types na-
tively, so covering those in netpd would require
additional external libraries. More netpd-
abstractions might be added in future versions
of netpd (for instance, for the ’matrix’ type as
defined by the ’iemmatrix’ library).

4 Conclusions

Although all aspects netpd addresses seem to
work flawlessly, the overall experience is not free
of issues. A major culprit are audio drop outs
caused by certain tasks like loading new instru-
ments. Some causes for audio drop outs cannot
be addressed by netpd as they are intrinsic to
Pd’s design. Others have been addressed by em-
ploying threaded externals. Also there are ways
to work around certain causes, for instance by
loading all instruments beforehand.

In past years, netpd enabled the creation of
a community of ever varying members from
around the globe. Some sessions were spanning
three continents. Quite a few users wrote in-
struments and some more used to play with it.
A huge pile of music3 from recorded sessions
grew over the years. While technically not ma-
tured, there used to be a lot of activity. Af-
ter it got more quiet around netpd, I decided
to rewrite the framework from scratch, since
some design flaws became more apparent. In
the meantime, Pure Data and many libraries
evolved to a higer degree of maturity, which
made the rewrite presented in this paper possi-
ble at all. Many instruments have been ported
from the old framework and some new ones have
been written. netpd has been ”tinkered in the

3http://www.netpd.org/Listen

quiet” since and no community has been grown
again. A few sessions with media art students
revealed that there aren’t any show stoppers
with the framework and some people may be
intrigued by playing with it. It’s now time to
spread the word again, which is one reason for
the desire to present it at LAC 2013.

5 Acknowledgements

The companions from the early days of netpd
- Enrique Erne, Moritz Wettstein, Syntax the
Nerd - deserve credit for contributing their
thoughts about design in uncountable discus-
sions and for writing many instruments. Also,
I would like to thank the authors of the exter-
nal libraries that are the most crucial for netpd
and without them the realization wouldn’t have
been possible: the ’osc’ and ’slip’ libraries writ-
ten by Martin Peach and the ’iemnet’ network-
ing library written by Martin Peach and IO-
hannes Zmölnig. Both authors showed a great
willingness to add features useful for netpd and
to fix issues in their libraries. Collectively, I
thank all people who helped realizing sessions
on radio broadcasts, at concerts or other spe-
cial occasions.

